
The GitHub Open Source Development Process

Kevin Peterson
kevin@kevinp.me

Abstract

Open Source Software (OSS) projects, or software
projects with publicly available source code, are real-
izing ever more important roles in both personal and
business computing. As such, shifts in the way in
which OSS is developed could have impacts on both
the quantity and the quality of OSS projects.

The development process by which these projects
are produced is generally unstructured compared to
commercial software, but many projects do exhibit
general development patterns. GitHub, a popular
OSS code hosting website, along with Git, the site’s
Source Code Management (SCM) tool of choice, may
have the potential to fundamentally change this pro-
cess by facilitating new patterns and opportunities
for developers.

By analyzing a subset of GitHub repositories, this
report will show how GitHub has influenced some in-
trinsic aspects of traditional OSS development, such
as developer hierarchies and issue close velocity. We
find that many of the traditional aspects of OSS
development remain, such as most project develop-
ment being done by a small group of core developers.
Other traditional assumptions about OSS developer
hierarchy, such as a large number of Issue Reporters
compared to Committers, seems unsupported by the
GitHub data. We conclude that GitHub represents
an evolution of the OSS development process, and
not necessarily a large shift.

Keywords. Git, GitHub, Open Source

1 Introduction

Open Source Software (OSS) has fundamentally
changed how we view the Software Development Pro-
cess [25]. OSS projects are not only viable, but suc-
cessful and thriving.

A case study of the Apache Server project [20]
showed that a dedicated community can produce soft-
ware that rivals or exceeds commercial offerings. Fur-
thermore, it showed that even in the unstructured
context of OSS, certain structures, hierarchies, and
codes of conduct emerge. Contrast the Apache Server
project to a successful project on GitHub. Although
the spirit and intent may be the same, the tool set
is drastically different. The intent of this work is to
explore how GitHub facilitates this process, and also
how it may be causing it to evolve.

GitHub1 is a popular code hosting website that
uses Git Source Code Management (SCM).2 Along
with hosting software repositories, GitHub incorpo-
rates the social aspects of development. GitHub users
have community-visible profiles, and user actions can
be tracked and followed by other community mem-
bers. This type of social integration of a user’s iden-
tity and actions is unique to GitHub [11].

Git itself, the SCM of GitHub, lends itself to the
collaborative nature of GitHub by allowing for devel-
opment to take place in a more distributed manner
than previously available in other SCM systems [27].
Git also allows for a variety of work flows [8]. These
work flows may be tailored to the individual needs
of a project. The Linux Kernel, for example, uses a
Dictator and Lieutenants Workflow [24], which is hi-
erarchical in nature. Other work flows may be more
distributed, or resemble more traditional centralized
SCM systems. Although work flow techniques aren’t
explicitly addressed in this work, it is important to
note that work flow change may contribute to process
change.

To better understand quantitatively the GitHub
process, three hypotheses are introduced. The goal
of these hypotheses is to bridge the gap between the
more qualitative research of GitHub [11, 4] and the
statistical analysis of data from a random sampling

1https://github.com/
2http://git-scm.com/

Page 1

of GitHub projects.
In addition, three supporting research questions are

proposed. These questions will draw upon data from
this work, but also reference several case studies to
better represent how GitHub may be changing the
way in which OSS development is conducted. These
qualitative observations, paired with the more quan-
titative data analysis, allow for a broad description
of the way that GitHub is changing the Software En-
gineering landscape for OSS.

1.1 Hypotheses

The following hypotheses are presented in an effort to
better understand the GitHub development process
by analyzing data from actual GitHub projects. Each
hypothesis will be backed by previous research in
an attempt to show concrete ways in which GitHub
may be changing the OSS development process.
Where possible, results from previous research on
the Apache Server [20] are compared, as this work
closely aligns with Hypothesis 2 and 3.

Hypothesis 1: As the number of Watchers in-
crease, the number of Repository Forks will
increase.
In Open Source Software, a feeling of community be-
longing can be intrinsically motivating to develop-
ers [19]. This feeling of belonging can be expressed
passively, as a watch, or actively, as a fork of a repos-
itory.

In GitHub, a watch is a user act of subscribing to
changes in a repository. It is also referred to as a star.
A watch allows users to receive status updates, such
as when code has been committed. This is consid-
ered a passive act, as it signifies involvement in the
community, but no direct action to contribute.

A fork is the creation of a personal copy of a repos-
itory [11], from which changes may be made without
impacting the original code source. A fork is an active
action, as it signifies both involvement and intent to
contribute. It should be noted, however, that it only
signifies intent – a fork of a repository could be made
and no further actions taken.

As watches don’t necessarily signal intent to
contribute, a positive direction for an OSS project
is to not only increase the number of watchers, but
also the number of forks. As both signify a general
interest in the project, it is expected that there will
be some correlation between the two.

Hypothesis 2: As the number Repository
Forks increase, the Issue Resolution Time will
decrease.

In OSS, a project fork has at times carried negative
connotations, and has even been referred to as a haz-
zard [17]. In the context of Git and GitHub, however,
a fork is a positive occurrence for a project, as it sig-
nifies greater project involvement. As Git allows for
easy merging of forks, code contributions in the form
of defect fixes can be incorporated quickly. Because
of this, it is expected that Issue Resolution Time will
decrease as the number of forks increases.

The Apache Project noted that a rapid response to
problems can be obtained because OSS is not bound
to release schedules in the same way as commercial
software. “Patches” may be released at any time,
by any member of the community [20]. “Patches”
in the context of GitHub could be equated to Pull
Requests. A Pull Request is an announcement by a
fork that there have been changes made that may be
appropriate to add back to the main repository. The
owners of the main repository may then audit these
requests, and pull some or all of them back into the
main repository.

This hypothesis is, ultimately, an examination
of “Linus Law” [25] in the context of GitHub. In
other words, the more exposure the code gets (in
terms of forks), the easier bugs will be to find and fix.

Hypothesis 3: There will be more Issue Re-
porters than Committers by an order of mag-
nitude.
Research into the Apache Server project observed
that there were far more Issue Reporters than there
were code Committers [20]. The Apache Server
project is an excellent case study in this type of De-
veloper Hierarchy. Apache is built around a small set
of Core Developers, followed by Defect Repairers and
Defect Reporters. Each level of this hierarchy brings
with it an order of magnitude increase in number of
participants. The 10-15 Core Developers contribute
around 80% of the new functionality, while the rest
of the 400 code contributors focus primarily on bug
fixes. The Defect Reporters were by far the largest
group, with over 3000 individuals submitting bug re-
ports.

Because issue reporting is of low risk to the code
base, but has potentially high value, it is a perfect
way for large numbers of people to contribute. It
is expected that the findings of the Apache Server
project research will hold true for GitHub projects as
well.

1.2 Research Questions

To expand the analysis scope slightly, three qualita-
tive research questions are posed. These, although

Page 2

backed by analyzed data where possible, are intended
to show broader patterns, ideas, and motivations
around the use of GitHub. Where possible, in-
terviews [4] were conducted to explore high level
concepts and motivations.

Research Question 1: Are GitHub projects
primarily focused around a small set of core
Committers?
A small core of developers contributing to a project
seems to be a well entrenched pattern of OSS devel-
opment [20, 21, 18]. At the extreme of this, a study
of projects on the software hosting site SourceForge3

found that a large percentage of OSS development
is done by lone developers [18]. Is a small core of
developers intrinsic to OSS development, or have the
social aspects of GitHub and the distributed nature
of Git changed this?

Research Question 2: How is GitHub chang-
ing the OSS process?
The social aspects of GitHub are an important part
of the development experience [11]. User interactions
and social pressures can drive OSS development in
interesting ways. Social aspects of OSS develop-
ment have existed, however, before GitHub, with
mailing lists [20], gift giving mechanisms [5], and
other collaboration tools. What is GitHub doing to
facilitate and capitalize on the social aspects of OSS
development, and how might this influence the OSS
development process?

Research Question 3: Can GitHub be used for
more than code artifacts?
The Object Management Group R©4 is a computer in-
dustry consortium focused on technology standards.
Potential standard submission teams must go through
a vetting process [16] which allows industry rep-
resentatives to provide feedback on the standard.
Gathering and recording this feedback is a challenge,
but GitHub’s issue tracking system may be able to
streamline the process. This is just one example of
how GitHub is being used for non-code artifacts. Are
organizations exploring this type of work flow?

3http://sourceforge.net
4http://www.omg.org

2 Methods

2.1 Collection and Storage

Data collection was done using the GitHub REST
API.5 A random selection of 1000 repositories was se-
lected, and metrics were gathered. Only repositories
owned by a GitHub Organization were considered.
GitHub Organizations are group-owned accounts,6 as
opposed to normal individual user-owned accounts.
Organization owned repositories were chosen to in-
crease the likelihood of analyzing high-participation
projects. The selection process used for choosing the
repository sample is described in Algorithm 1.

Algorithm 1 Data Collection Algorithm

1: while i < 1000 do
2: i← i+ 1
3: word← random(word list)
4: repos← github search(word)
5: j ← random(repos)
6: repo← reposj
7: if isOrgRepo(repo) then
8: store(repo)
9: end if

10: end while

To select a repository, a random word is selected
from an arbitrary list via the random(word list)
function. Using the GitHub search API, a list of
repositories containing that word in the description is
retrieved using the github search(word) function,
from which one repository is randomly selected us-
ing random(repos). When a random repository has
been selected, the isOrgRepo function will filter out
all non Organization owned repositories. Next, the
store function accepts as an input the given repos-
itory. The purpose of this function is to persist the
given repository to a database for further analysis.
Results were stored in a MySQL relational database
management system. The database schema to store
the data is described in Figure 1.

Data was collected and analyzed using a Python7

script. Because the GitHub REST API constrains the
number of API calls per hour made by a client, logic
was included to pause execution when the allotment
was exhausted.

Matplotlib [14], a 2D graphics package for Python,
was used to render graphs and charts. NumPy and
SciPy [15] were used for data analysis calculations,
such as correlation coefficients.

5http://developer.github.com/v3/
6https://github.com/blog/674-introducing-organizations
7http://python.org/

Page 3

Figure 1: GitHub data entity relationship diagram

All source code and materials used in data
collection and analysis are hosted at GitHub
(naturally!), and may be accessed by the fol-
lowing URL: https://github.com/kevinpeterson/
github-process-research.

2.2 Analysis

As stated, the main focus of data collection was to
gather metrics pertaining to GitHub Repositories. In
this context, a Repository is defined as a set of At-
tributes. An Attribute is a metric of interest. See
Section 2.2.1 for further information on individual At-
tributes. For analysis purposes, these metrics of in-
terest are used as an Indexing Set A′, and have labels
as follows:

A′ = {i, c, i′, i′′,∆, ω, ε}

Where i = Issues, c = Commits, i′ = Closed Issues,
i′′ = Open Issues, ∆ = Issue Close Time, ω = Issue
Reporters, and ε = Committers.

All analyzed Repositories can be thought of as the
Indexed Family of Attribute Sets, or a set of sets of
Attributes. Let the set of these sets of Attributes be
called S, or the Repository Sample. We can label the
Attribute sets by arbitrary integers 0 through |S|, or:

{Ai}i∈{0,1,2...|S|}

In this way, we can reference a set of Attributes (or,
an individual Repository), by Ai.

Going further, we can also denote an individual
Attribute of a given Repository by:

{A(i,α)}(i,α)∈A′×{0,1,2...|S|}

or, Ai,α. For example, A10,∆ would denote the value
of the Issue Close Time (∆) of Repository 10.

To analyze the metrics, the sets of all individual At-
tribute across all Repositories are processed by some
aggregate function f . The input of this function is
the union of all sets of a particular Attribute over
each Repository in the sample. For this analysis, the
aggregate functions are: mean, min, max, stddev.
This analysis is applied to all repositories in the sam-
ple S for which data was collected. Each attribute α
is analyzed independently, so given:

g(α) = f

 |S|⋃
r=0

Ar,α

each individual attribute is processed via g(α) and
will result in the output of the given aggregate func-
tion. The result of each aggregate function when ap-
plied to the entire sample set of Repositories is shown
in Table 1.

2.2.1 Attributes

The individual Attribute names, or the elements
of A′, are described below. For detailed summary
statistics of these Attributes, see Table 1.

Issues: The number of issues posted to a reposi-
tory’s issue tracker.8

Commits: The number of individual source code
commits to a repository. It is important to note that
a commit is a single transaction that changes the code
contents of a repository. Actual commit “size” (lines
of code modified, number of files changed, for exam-
ple) is not taken into account.
Closed Issues: The number of issues in a repository
in a state of closed at the time of processing.
Open Issues: The number of issues in a repository
in a state of open at the time of processing.
Issue Close Time: The average time (in days)
taken to close a given issue in a repository. Non-
closed issues were not counted.

The average Issue Close Time is calculated using
the following method: Let d(x) be a function that
converts seconds to a Date, and let s(x) be a function
that converts a Date to seconds. Let I equal the set of
Issues in a given repository, with elements comprised

8https://github.com/blog/411-github-issue-tracker

Page 4

of tuples (τ, τ ′), where τ is Issue Open Date and τ ′ is
Issue Close Date. We calculate Issue Close Time by:

∆ = d

(∑
i∈I s (p2(i))− s (p1(i))

|I|

)
Where for each issue i in I, the Issue Open Date

s(p1(i)) is subtracted from the Issue Close Date
s(p2(i)), where p1(i) and p2(i) denote projections of
the tuple, or Issue Open Date and Issue Close Date,
respectively. The result of this is averaged and con-
verted into a Date via d(x), resulting in the average
issue close time interval ∆.
Issue Reporters: The number of distinct users that
have opened at least one Issue.
Committers: The number of distinct users that
have summited at least one Commit.

3 Results

3.1 Summary Statistics

Variable Mean Min Max Std. Dev.
Issues 67.91 1 2708 283.65

Commits 548.68 1 61129 3659.2
Closed Issues 64.82 1 2392 269.04
Open Issues 15.68 1 316 41.49

Issue Close Time 28.46 0 515 64.08
Issue Reporters 20.72 1 349 58.33

Committers 26.54 1 4245 245.37
N = 1000 Repositories

Table 1: GitHub summary statistics

Table 1 describes summary statistics of the repos-
itory variables described in Section 2.2.1. The most
evident feature of the result is the large variance. In
fact, for the set of tested variables A, each variable Aj
is observed to have a larger standard deviation than
the variable mean:

∀j ∈ A : j < σj (1)

All measured variables demonstrated this character-
istic. We will refer to this characteristic as Summary
Data Assertion 1.

The sample (N = 1000) GitHub repositories were
selected, at random, out of a total of 5.7 million [1]
public GitHub repositories.

3.2 Hypotheses

Hypothesis 1: As the number of Watchers in-
crease, the number of Repository Forks will

Figure 2: Repository watchers and forks

increase.
A correlation coefficient of 0.8586 was observed be-
tween the number of Watchers and Forks of a reposi-
tory. This suggests that a correlation between Watch-
ers and Forks exists.

The data reinforces the hypothesis, as does other
research in the area. Even though there are argu-
ments that the number of Forks is the true measure
of project success [3], the data suggests that the two
measures are related. Also, Dabbish et al. have noted
that the number of Watches can be a key for others
to gauge interest in a project, and thus determine
if they should participate [10]. If the number of
Watchers of a repository serves as a social cue for
participation, even “passive” involvement with a
project (Watching) could influence the “active”
participation (Forking). This could possibly con-
tribute to the correlation of the two variables. It is
important to note, however, that we cannot conclude
any causal relationship between the two variables.
Concluding whether the social cue for participation
is the Forks, the Watchers, or some combination, is
not possible given the data and methods used.

Hypothesis 2: As the number Repository
Forks increase, the Issue Resolution Time will
decrease.
No significant correlation was found between the
number of repository forks and issue resolution time,
as shown by the data represented in Figure 3. It
is important to note, however, that issue resolution
time is not necessarily related to software product

Page 5

Figure 3: Repository issue close time (in days) and
number of forks

quality in the context of GitHub. We can assert that
for several reasons. First, GitHub issues are not nec-
essarily product defects. Issues may be feature re-
quests, comments, or general support questions. Sec-
ond, GitHub projects may have primary issue track-
ing services elsewhere, while using the GitHub issues
as secondary services or not at all. Third, cultural
shifts in how testing is approached in GitHub may
have significant impacts on software quality. Pham et
al. explore an emerging “testing culture” in GitHub,
which suggests that GitHub may be facilitating test-
ing by making it more triable by lowering entry bar-
riers, and making the process as a whole more ob-
servable. This aspect is something which could have
sizable impacts on software quality but wouldn’t nec-
essarily be reflected in this metric [23].

It is possible that other factors, such as issue
prioritization, may have a greater impact on issue
resolution time. Research does support a relation-
ship [21] between the stated priority and fix interval.
As the GitHub issue tracker can only support
prioritization by free-text tags placed on issues, it is
not feasible to programmatically gather issue priority
metrics.

Hypothesis 3: There will be more Issue Re-
porters than Committers by an order of mag-
nitude.
Data does not support an exponentially increasing
number of distinct Issue Reporters as compared to
distinct Committers. As shown in Figure 4, the num-

Figure 4: Repository issue reporters and committers

ber of Issue Reporters is larger than the number of
Committers, but not by an order of magnitude. Ta-
ble 1 reinforces this, as the averages of the two vari-
ables are closer than the hypothesis states. This does
not seem to completely align with findings in the
Apache Server project [20].

Figure 4 does suggest, however, that that the two
variables are related. The hypothesis implies that
there will be a correlation between the two variables
– which is demonstrated by a reasonably strong
correlation coefficient of 0.8299. More investigation
would be necessary to further examine this finding.

3.3 Research Questions

Research Question 1: Are GitHub projects
primarily focused around a small set of core
Committers?
The data in Figure 5 represents commit percentage
breakdown, or an analysis of developer Contribution
percentages to a repository. The intent of this mea-
surement is to show how the number of repository
commits are distributed among it’s committers. The
slices represent the distribution of committers that
have committed a given percentage of commits (or
a Contribution percentage, as labeled in the figure)
to a project. For example, a small percentage of de-
velopers have contributed 95− 100% of the commits
to a repository, so this is represented as a small slice
in the figure. Contrast that to developers that have
committed 0−5% of the commits to a repository. This

Page 6

Figure 5: Distribution of individual committer con-
tribution percentage to a repository

type of contribution is common, and represented as a
larger slice. The Contribution percentages are calcu-
lated by:

P =

{
Cu
|C |
× 100

∣∣∣u ∈ U} (2)

Where U is the set of Committers to a given Repos-
itory, C is the set of all Commits to a Repository, and
Cu denotes sets of Commits by an individual Com-
mitters to a Repository, or:

{Cu}u∈U

Each Committer, then, will produce a subset of all
Commits to a a Repository, or Cu ⊂ C .

To find the percentages, or set P of Equation 2,
the commits by each user Cu are divided by the total
number of commits |C |, yielding the set of contribu-
tion percentages P for the repository. Elements of P
are then assigned to ranges 0−5%, 5−10%, 10−50%,
50−95%, and 95−100% (with shared values inclusive
to the larger range). The distribution of this range
assignment is plotted on Figure 5.

Most notably, the data shows that a large percent-
age of developers committed small amounts (0− 5%)
of the total number of repository commits. This
means that a small core are not entirely monopo-
lizing the commits, but rather opportunity exists for
users to contribute, even if in small ways. Instances of
developer monopolization of commits to a repository
(for example, where a developer contributes 95−100%
of the total commits), are shown to be small.

Figure 6: Count of individual committers per reposi-
tory

When looking strictly at the number of committers
to a repository, however, the notion of a small set
of core committers is strongly supported, as the
vast majority of repositories have fewer than 10
committers (Figure 6).

Research Question 2: How is GitHub chang-
ing the OSS process?
Thung et al. showed that the social coding aspects
of GitHub – specifically the developer-to-developer
connectivity – enabled high collaboration rates [28].
In fact, the developer connectivity was shown to be
higher than SourceForge and even Facebook. In a re-
cent interview with GitHub staff, the social aspects
of GitHub were referred to as “unique and power-
ful [4],” which seems to suggest that this is a strong
underlying product goal.

Ye also observed that the contribution environ-
ment, or “society,” is important in providing a frame-
work for developer trust building:

Only in a society where technical supremacy
is highly appreciated can developers acquire
good reputations among their peers by dis-
playing their skills through free distribu-
tion, and often wider acceptance, of their
systems.The good reputation attracts atten-
tion, trust, and cooperation from others and
lays the foundation for advancing the origi-
nal developers agenda and the establishment
and development of OSS communities. [29]

Page 7

With this process change can also come cause for
concern. The move to Git from a centralized version
control system (such as SVN or CVS) is not without
its challenges. Differences in philosophy and nomen-
clature may place added strain on developers [6].
Also, it is not to be assumed that process change
is always welcome [12], even if it is an improvement.
Developers and organizations have existing processes,
SCM tools, and workflow patterns – which all change
at a cost.

Despite the potential migration cost, the National
Center for Biomedical Ontology,9 the National Can-
cer Informatics Program,10 NASA,11 and the White-
House12 are just some organizations that have moved
all or portions of development to GitHub. As these
and other organizations consider the move to GitHub,
the distributed and “social” aspects of the OSS pro-
cess will continue to evolve.

According to GitHub Education Liaison John Brit-
ton, lowering the barrier to participation is an impor-
tant cultural shift:

GitHub moved the open source community
away from a permission culture. Prior to
GitHub, contributing to an open source
project was very difficult and often involved
asking permission. By allowing people to
fork a repository and make changes with-
out asking for permission, GitHub has made
contributing to someone else’s project much
easier than it has ever been. By submit-
ting a Pull Request with suggested changes,
project maintainers and contributors have a
place to discuss changes to code that is al-
ready written and to refine it. [7]

Spending large amounts of time and resources
to participate is a detriment to knowledge-sharing
in general, not just OSS development [2]. Because
of this, we conclude that this permissive culture of
knowledge-sharing that GitHub fosters represents an
important change in the OSS process.

Research Question 3: Can GitHub be used for
more than code artifacts?
The OMG R© standardization process is a process by
which products strive to produce an interoperabil-
ity standard by way of an industry standards con-
sortium [13]. The standardization process itself aims
to, at its conclusion, produce a set of model artifacts
containing sufficient detail such that when interpreted

9https://github.com/ncbo
10https://github.com/ncip
11https://github.com/nasa
12https://github.com/WhiteHouse

and implemented, produce interoperable software. At
a conceptual level, this can be thought of as a soft-
ware requirements engineering process as much as a
standardization process. If so, of the five main tasks
of requirements engineering, Elicitation, Analysis and
Negotiation, Documentation, Validation, and Man-
agement [26], we can show that GitHub is an appro-
priate forum for many of them.

As a case study, the CTS2 OMG R© Specification [9]
used a GitHub issue tracker13 to track specification
changes. Elicitation, Analysis and Negotiation were
natural fits for the issue tracker. This was chosen
in part because the barrier to participation was very
small (only a GitHub account was needed), and the
issue tracker itself allowed for dialogs in the form of
comments. Because customer involvement is criti-
cal to these activities [22], ease of contribution was a
main concern. OMG R© has a predescribed format for
requirements Documentation, but using the GitHub
issue API,14 much of this documentation can be au-
tomated. Validation and Management are areas of
requirements engineering that GitHub has interest-
ing solutions for. First, in order to track (or validate)
changes to the specification, when the actual specifi-
cation is modified, the commit that modified it can be
traced to a named issue by simply putting the issue
number in the commit log. This level of traceability
is powerful, as it allows every change to the specifi-
cation artifacts to be tracked consistently to an open
issue. As the normal OMG R© process proceeds, re-
quirements can be managed through “tagging” the
issues. By allowing issues to be grouped by arbitrary
tags, users are more free to adapt their own work
flow. For instance, when community voting on is-
sues needed to be done for CTS2, a simple “ready for
vote” tag signified to the voting board exactly what
was under consideration

As mentioned, the CTS2 specification made heavy
use of the GitHub issue tracker, as well as an-
other OMG R© specification, ServD.15 For open source
specifications, or requirements engineering activities,
GitHub has shown to be a viable platform.

4 Conclusion

The analysis suggests an evolution in process, but not
necessarily a large shift. We classify this as an evo-
lution because although many of the traditional as-
pects of the OSS development process remain, there
are notable differences. For example, a small sub-

13https://github.com/cts2/cts2-specification/issues
14http://developer.github.com/v3/issues/
15https://github.com/servd/servd-specification

Page 8

set of core developers, a traditional aspect of OSS
development [20, 21, 18], seems supported by both
the summary data in Figure 1, and the distribution
of committers per repository in Figure 6. Figure 5
shows a significant number of participators, albeit
with small contribution amounts, in many reposito-
ries. This may indicate a lowered entry barrier for
participation, and is consistent with the conclusions
reached in Research Questions 1 and 2.

The data does not, however, reflect some other tra-
ditional aspects of OSS development. Notably, it
was observed that data gathered for Hypothesis 2
(As the number Repository Forks increase, the Is-
sue Resolution Time will decrease) and Hypothesis 3
(There will be more Issue Reporters than Commit-
ters by an order of magnitude) seemed contrary to
what the Apache Server report concluded [20]. A
possible explanation is the amount of variability in
the data collected. Summary Data Assertion 1 (Sec-
tion 3.1), which is derived from the summary data
shown in Table 1, suggests large amounts of variety
in the observed variables. This may suggest a wide
range of repository purposes, or specifically, that not
all repositories on GitHub are intended to be consum-
able software artifacts for users, or “customers.” A
large number of repositories may not be intended for
customer consumption, but merely as example code,
experimentation, or exercises. Given this, and spe-
cific reasons outlined in the hypotheses themselves,
we cannot state any definitive conclusions regarding
these two hypotheses. More research into categoriz-
ing GitHub repositories is needed.

The most notable difference in OSS process driven
by GitHub, considering both the quantitative and
qualitative analysis, is the lowered barrier to partic-
ipation. Qualitative analysis conducted in Research
Question 2 suggests a cultural shift [4, 7] in the partic-
ipation process. The data also supports high levels of
participation, especially Figure 5, which shows that
many repositories have large numbers of developers
committing small amounts of code. This, we con-
clude, represents an important evolution in the OSS
development process.

5 Acknowledgments

We thank Gilberto Fragoso, Ph.D. (NIH/NCI), Paul
Alexander (NCBO), John Britton (GitHub), and all
of the GitHub Staff for interviews, insights and ideas,
Harold Solbrig, Craig Stancl, and Dick Hedger for
guidance, and Rick Kiefer for his review.

References

[1] GitHub press page.
https://github.com/about/press. Accessed:
18/03/2013.

[2] Alexander Ardichvili, Vaughn Page, and Tim
Wentling. Motivation and barriers to partici-
pation in virtual knowledge-sharing communities
of practice. Journal of knowledge management,
7(1):64–77, 2003.

[3] Benoit Baudry and Martin Monperrus. Towards
ecology-inspired software engineering. arXiv
preprint arXiv:1205.1102, 2012.

[4] Andrew Begel, Jan Bosch, and Margaret-Anne
Storey. Social networking meets software de-
velopment: Perspectives from github, msdn,
stack exchange, and topcoder. Software, IEEE,
30(1):52–66, 2013.

[5] Magnus Bergquist and Jan Ljungberg. The
power of gifts: organizing social relationships in
open source communities. Information Systems
Journal, 11(4):305–320, 2008.

[6] Christian Bird, Peter C Rigby, Earl T Barr,
David J Hamilton, Daniel M German, and Prem
Devanbu. The promises and perils of mining git.
In Mining Software Repositories, 2009. MSR’09.
6th IEEE International Working Conference on,
pages 1–10. IEEE, 2009.

[7] John Britton. email interview, Apr. 17 2013.

[8] Scott Chacon, Junio C Hamano, and Shawn
Pearce. Pro Git, volume 288. Apress, 2009.

[9] Common terminology services 2 (CTS2).
http://www.omg.org/spec/CTS2/1.0, 2012.

[10] Laura Dabbish, Colleen Stuart, Jason Tsay, and
James Herbsleb. Leveraging transparency. 2013.

[11] Laura Dabbish, Colleen Stuart, Jason Tsay, and
Jim Herbsleb. Social coding in github: trans-
parency and collaboration in an open software
repository. In Proceedings of the ACM 2012
conference on Computer Supported Cooperative
Work, pages 1277–1286. ACM, 2012.

[12] Brian De Alwis and Jonathan Sillito. Why are
software projects moving from centralized to de-
centralized version control systems? In Coop-
erative and Human Aspects on Software Engi-
neering, 2009. CHASE’09. ICSE Workshop on,
pages 36–39. IEEE, 2009.

Page 9

[13] Object Management Group. Policy and Proce-
dures of the OMG Technical Process, pp/12-12-
01, 2012.

[14] J. D. Hunter. Matplotlib: A 2d graphics envi-
ronment. Computing In Science & Engineering,
9(3):90–95, 2007.

[15] Eric Jones, Travis Oliphant, Pearu Peterson,
et al. SciPy: Open source scientific tools for
Python, 2001–.

[16] Cris Kobryn. Uml 2001: a standardiza-
tion odyssey. Communications of the ACM,
42(10):29–37, 1999.

[17] Bruce Kogut and Anca Metiu. Open-source soft-
ware development and distributed innovation.
Oxford Review of Economic Policy, 17(2):248–
264, 2001.

[18] Sandeep Krishnamurthy. Cave or community?:
An empirical examination of 100 mature open
source projects. First Monday, 2002.

[19] Karim Lakhani and Robert Wolf. Why hack-
ers do what they do: Understanding motivation
and effort in free/open source software projects.
2003.

[20] A. Mockus, R.T. Fielding, and J. Herbsleb. A
case study of open source software development:
the apache server. In Software Engineering,
2000. Proceedings of the 2000 International Con-
ference on, pages 263–272. IEEE, 2000.

[21] Audris Mockus, Roy T Fielding, and James D
Herbsleb. Two case studies of open source
software development: Apache and mozilla.
ACM Transactions on Software Engineering and
Methodology (TOSEM), 11(3):309–346, 2002.

[22] Frauke Paetsch, Armin Eberlein, and Frank
Maurer. Requirements engineering and ag-
ile software development. In Enabling Tech-
nologies: Infrastructure for Collaborative En-
terprises, 2003. WET ICE 2003. Proceed-
ings. Twelfth IEEE International Workshops on,
pages 308–313. IEEE, 2003.

[23] Raphael Pham, Leif Singer, Olga Liskin, Fer-
nando Figueira Filho, and Kurt Schneider. Cre-
ating a shared understanding of testing culture
on a social coding site.

[24] Andreas Platschek and Nicolas McGuire. Floss
for safety: Mastering mission critical develop-
ment with git.

[25] Eric Raymond. The cathedral and the bazaar.
Knowledge, Technology & Policy, 12(3):23–49,
1999.

[26] Ian Sommerville and Gerald Kotonya. Require-
ments engineering: processes and techniques.
John Wiley & Sons, Inc., 1998.

[27] Diomidis Spinellis. Git. Software, IEEE,
29(3):100–101, 2012.

[28] Ferdian Thung, Tegawendé F Bissyandé, David
Lo, Lingxiao Jiang, et al. Network structure of
social coding in github. In Proceedings of the
17th European Conference on Software Mainte-
nance and Reengineering, pages 1–4, 2013.

[29] Yunwen Ye and Kouichi Kishida. Toward an
understanding of the motivation of open source
software developers. In Software Engineering,
2003. Proceedings. 25th International Confer-
ence on, pages 419–429. IEEE, 2003.

Page 10

